Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7608, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993466

RESUMO

Many microorganisms are auxotrophic-unable to synthesize the compounds they require for growth. With this work, we quantify the prevalence of amino acid auxotrophies across a broad diversity of bacteria and habitats. We predicted the amino acid biosynthetic capabilities of 26,277 unique bacterial genomes spanning 12 phyla using a metabolic pathway model validated with empirical data. Amino acid auxotrophy is widespread across bacterial phyla, but we conservatively estimate that the majority of taxa (78.4%) are able to synthesize all amino acids. Our estimates indicate that amino acid auxotrophies are more prevalent among obligate intracellular parasites and in free-living taxa with genomic attributes characteristic of 'streamlined' life history strategies. We predicted the amino acid biosynthetic capabilities of bacterial communities found in 12 unique habitats to investigate environmental associations with auxotrophy, using data compiled from 3813 samples spanning major aquatic, terrestrial, and engineered environments. Auxotrophic taxa were more abundant in host-associated environments (including the human oral cavity and gut) and in fermented food products, with auxotrophic taxa being relatively rare in soil and aquatic systems. Overall, this work contributes to a more complete understanding of amino acid auxotrophy across the bacterial tree of life and the ecological contexts in which auxotrophy can be a successful strategy.


Assuntos
Aminoácidos , Bactérias , Humanos , Aminoácidos/metabolismo , Bactérias/metabolismo , Redes e Vias Metabólicas , Genoma Bacteriano , Ecossistema
2.
Proc Biol Sci ; 290(2002): 20230709, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37403500

RESUMO

Fitness equalizing mechanisms, such as trade-offs, are recognized as one of the main factors promoting species coexistence in community ecology. However, they have rarely been explored in microbial communities. Although microbial communities are highly diverse, the coexistence of their multiple taxa is largely attributed to niche differences and high dispersal rates, following the principle 'everything is everywhere, but the environment selects'. We use a dynamical stochastic model based on the theory of island biogeography to study highly diverse bacterial communities over time across three different systems (soils, alpine lakes and shallow saline lakes). Assuming fitness equalization mechanisms, here we newly analytically derive colonization-persistence trade-offs, and report a signal of such trade-offs in natural bacterial communities. Moreover, we show that different subsets of species in the community drive this trade-off. Rare taxa, which are occasional and more likely to follow independent colonization/extinction dynamics, drive this trade-off in the aquatic communities, while the core sub-community did it in the soils. We conclude that equalizing mechanisms may be more important than previously recognized in bacterial communities. Our work also emphasizes the fundamental value of dynamical models for understanding temporal patterns and processes in highly diverse communities.


Assuntos
Ecossistema , Modelos Biológicos , Ecologia
3.
Microbiol Res ; 274: 127444, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37421802

RESUMO

We surveyed wild boar (Sus scrofa) populations using 16S rRNA gene analysis of the gut microbiota in fresh faeces taken from 88 animals hunted in 16 hunting estates. The wild boar is a very convenient model system to explore how environmental factors including game management, food availability, disease prevalence, and behaviour may affect different biological components of wild individuals with potential implications in management and conservation. We tested the hypotheses that diet (according to stable carbon isotopes analyses), gender (i.e., animal behaviour studying males and females), and both health (analyses of serum samples to detect exposure to several diseases) and form statutes (i.e., thoracic circumference in adults) are reflected in changes in the intestinal microbiota. We focused on a gut functional biomarker index combining Oscillospiraceae and Ruminococcaceae vs. Enterobacteriaceae. We found that gender and the estate (population) were explanatory variables (c.a. 28% of the variance), albeit a high degree of overlapping among individuals was observed. The individuals with higher abundance of Enterobacteriaceae showed a gut microbiota with low diversity, mostly in males. Significant statistical differences for thoracic circumference were not found between males and females. Interestingly, the thoracic circumference was significantly and inversely related to the relative abundance of Enterobacteriaceae in males. Overall, we found that diet, gender, and form status were major factors that could be related to the composition and diversity of the gut microbiota. A high variability was observed in the biomarker index for populations with natural diet (rich in C3 plants). Although, we noticed a marginally significant negative trend between the index (higher abundance of Enterobacteriaceae) and the continuous feeding of C4 plants (i.e., supplementary maize) in the diet of males. This result suggests that continuous artificial feeding in hunting estates could be one of the factors negatively influencing the gut microbiota and the form status of wild boars that deserves further investigations.


Assuntos
Microbioma Gastrointestinal , Animais , Masculino , Feminino , Suínos , RNA Ribossômico 16S/genética , Fezes , Enterobacteriaceae , Sus scrofa/genética
4.
Curr Opin Biotechnol ; 81: 102945, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37087840

RESUMO

The atmosphere is a major route for microbial intercontinental dispersal, including harmful microorganisms, antibiotic resistance genes, and allergens, with strong implications in ecosystem functioning and global health. Long-distance dispersal is facilitated by air movement at higher altitudes in the free troposphere and is affected by anthropogenic forcing, climate change, and by the general atmospheric circulation, mainly in the intertropical convergence zone. The survival of microorganisms during atmospheric transport and their remote invasive potential are fundamental questions, but data are scarce. Extreme atmospheric conditions represent a challenge to survival that requires specific adaptive strategies, and recovery of air samples from the high altitudes relevant to study harmful microorganisms can be challenging. In this paper, we highlight the scope of the problem, identify challenges and knowledge gaps, and offer a roadmap for improved understanding of intercontinental microbial dispersal and their outcomes. Greater understanding of long-distance dispersal requires research focus on local factors that affect emissions, coupled with conditions influencing transport and survival at high altitudes, and eventual deposition at sink locations.


Assuntos
Atmosfera , Ecossistema
5.
Mol Ecol ; 32(7): 1629-1638, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36626114

RESUMO

Identifying the main drivers of community assembly remains an open fundamental question in ecology. Dispersal processes introduce randomness in community composition while selection for particular environments creates predictable assemblages. However, the interaction between selection and dispersal processes is still poorly understood. Here, we address this question in bacterial and microeukaryotic communities inhabiting a highly dynamic system of ephemeral (hyper)saline lakes. We show that the combination of beta-diversity decomposition methods and a temporal approach based on colonization and extinction dynamics yields new insights into the relative effect of selection and dispersal along environmental gradients. Selective pressure and dispersal-related processes simultaneously shape each local community with variable strength and effect. The dominance of selection vs. dispersal shifted from stochastic to deterministic assembly as salinity increased along the gradient. This transition also had an impact on the temporal dynamics of the lakes as community turnover decreased at high salinities because both colonization and extinction rates slowed down. Only microeukaryotic richness decreased along the gradient due to lower effective colonization at higher salinities, suggesting that the net effect of selection and dispersal is determined by both environmental conditions and the idiosyncrasy of the different microbial ecologies. Our results emphasize the use of temporal approaches in combination with standard statistical methods for a better understanding of the dynamic processes underlying community assembly.


Assuntos
Biodiversidade , Microbiota , Ecologia , Microbiota/genética , Bactérias , Lagos , Processos Estocásticos
6.
Ecology ; 103(12): e3834, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35872610

RESUMO

Salinity fluctuations constitute a well-known high stress factor strongly shaping global biological distributions and abundances. However, there is a knowledge gap regarding how increasing saline stress affects microbial biological interactions. We applied the combination of a probabilistic method for estimating significant co-occurrences/exclusions and a conceptual framework for filtering out associations potentially linked to environmental and/or spatial factors, in a series of connected ephemeral (hyper) saline lakes. We carried out a network analysis over the full aquatic microbiome-bacteria, eukarya, and archaea-under severe salinity fluctuations. Most of the observed co-occurrences/exclusions were potentially explained by environmental niche and/or dispersal limitation. Co-occurrences assigned to potential biological interactions remained stable, suggesting that the salt gradient was not promoting interspecific facilitation processes. Conversely, co-exclusions assigned to potential biological interactions decreased along the gradient both in number and network complexity, pointing to a decrease of interspecies competition as salinity increased. Overall, higher saline stress reduced microbial co-exclusions while co-occurrences remained stable suggesting decreasing competition coupled with lack of stress-gradient promoted facilitation in the microbiome of ephemeral saline lakes.


Assuntos
Lagos , Microbiota , Filogenia , Archaea , Salinidade
7.
Environ Pollut ; 308: 119592, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35688389

RESUMO

Semivolatile organic pollutants have potential for long range atmospheric transport and can thus reach pristine remote lakes by atmospheric deposition. Polycyclic aromatic hydrocarbons (PAHs) are among the most abundant and toxic semivolatile pollutants affecting lakes, however, the main factors controlling their fate are still poorly known. Here we show two contrasting lines of evidence for the importance of microbial degradation on the environmental fate of PAHs in a high altitude deep lake. The first evidence is given by an assessment of the metagenomes from surface and deep waters from Lake Redon (Pyrenees Mountains), which shows the occurrence of the initial ring hydroxylating dioxygenases as well as other PAH degrading genes from the complete metabolic route of PAH degradation. The second line of evidence is by the application of an environmental fate model for PAHs to Lake Redon under two contrasting scenarios considering the inclusion or not of degradation. When degradation is included in the model, PAH concentrations in the sediment are predicted within a factor of two of those measured in Lake Redon. Finally, the extent of the degradation sink is quantified and compared to other cycling PAH fluxes in the lake.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Altitude , Monitoramento Ambiental , Sedimentos Geológicos , Lagos/análise , Metagenoma , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise
8.
mSphere ; 7(3): e0091821, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35642514

RESUMO

A fundamental question in biology is why some species tend to occur together in the same locations, while others are never observed coexisting. This question becomes particularly relevant for microorganisms thriving in the highly diluted waters of high mountain lakes, where biotic interactions might be required to make the most of an extreme environment. We studied a high-throughput gene data set of alpine lakes (>220 Pyrenean lakes) with cooccurrence network analysis to infer potential biotic interactions, using the combination of a probabilistic method for determining significant cooccurrences and coexclusions between pairs of species and a conceptual framework for classifying the nature of the observed cooccurrences and coexclusions. This computational approach (i) determined and quantified the importance of environmental variables and spatial distribution and (ii) defined potential interacting microbial assemblages. We determined the properties and relationships between these assemblages by examining node properties at the taxonomic level, indicating associations with their potential habitat sources (i.e., aquatic versus terrestrial) and their functional strategies (i.e., parasitic versus mixotrophic). Environmental variables explained fewer pairs in bacteria than in microbial eukaryotes for the alpine data set, with pH alone explaining the highest proportion of bacterial pairs. Nutrient composition was also relevant for explaining association pairs, particularly in microeukaryotes. We identified a reduced subset of pairs with the highest probability of species interactions ("interacting guilds") that significantly reached higher occupancies and lower mean relative abundances in agreement with the carrying capacity hypothesis. The interacting bacterial guilds could be more related to habitat and microdispersal processes (i.e., aquatic versus soil microbes), whereas for microeukaryotes trophic roles (osmotrophs, mixotrophs, and parasitics) could potentially play a major role. Overall, our approach may add helpful information to guide further efforts for a mechanistic understanding of microbial interactions in situ. IMPORTANCE A fundamental question in biology is why some species tend to occur together in the same locations, while others are never observed to coexist. This question becomes particularly relevant for microorganisms thriving in the highly diluted waters of high mountain lakes, in which biotic interactions might be required to make the most of an extreme environment. Microbial metacommunities are too often only studied in terms of their environmental niches and geographic barriers since they show inherent difficulties to quantify biological interactions and their role as drivers of ecosystem functioning. Our study highlights that telling apart potential interactions from both environmental and geographic niches may help for the initial characterization of organisms with similar ecologies in a large scope of ecosystems, even when information about actual interactions is partial and limited. The multilayered statistical approach carried out here offers the possibility of going beyond taxonomy to understand microbiological behavior in situ.


Assuntos
Ecossistema , Interações Microbianas , Bactérias/genética , Eucariotos , Lagos/microbiologia
9.
Elife ; 112022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35356891

RESUMO

Genes of unknown function are among the biggest challenges in molecular biology, especially in microbial systems, where 40-60% of the predicted genes are unknown. Despite previous attempts, systematic approaches to include the unknown fraction into analytical workflows are still lacking. Here, we present a conceptual framework, its translation into the computational workflow AGNOSTOS and a demonstration on how we can bridge the known-unknown gap in genomes and metagenomes. By analyzing 415,971,742 genes predicted from 1749 metagenomes and 28,941 bacterial and archaeal genomes, we quantify the extent of the unknown fraction, its diversity, and its relevance across multiple organisms and environments. The unknown sequence space is exceptionally diverse, phylogenetically more conserved than the known fraction and predominantly taxonomically restricted at the species level. From the 71 M genes identified to be of unknown function, we compiled a collection of 283,874 lineage-specific genes of unknown function for Cand. Patescibacteria (also known as Candidate Phyla Radiation, CPR), which provides a significant resource to expand our understanding of their unusual biology. Finally, by identifying a target gene of unknown function for antibiotic resistance, we demonstrate how we can enable the generation of hypotheses that can be used to augment experimental data.


It is estimated that scientists do not know what half of microbial genes actually do. When these genes are discovered in microorganisms grown in the lab or found in environmental samples, it is not possible to identify what their roles are. Many of these genes are excluded from further analyses for these reasons, meaning that the study of microbial genes tends to be limited to genes that have already been described. These limitations hinder research into microbiology, because information from newly discovered genes cannot be integrated to better understand how these organisms work. Experiments to understand what role these genes have in the microorganisms are labor-intensive, so new analytical strategies are needed. To do this, Vanni et al. developed a new framework to categorize genes with unknown roles, and a computational workflow to integrate them into traditional analyses. When this approach was applied to over 400 million microbial genes (both with known and unknown roles), it showed that the share of genes with unknown functions is only about 30 per cent, smaller than previously thought. The analysis also showed that these genes are very diverse, revealing a huge space for future research and potential applications. Combining their approach with experimental data, Vanni et al. were able to identify a gene with a previously unknown purpose that could be involved in antibiotic resistance. This system could be useful for other scientists studying microorganisms to get a more complete view of microbial systems. In future, it may also be used to analyze the genetics of other organisms, such as plants and animals.


Assuntos
Bactérias , Genoma Arqueal , Bactérias/genética , Metagenoma , Fases de Leitura Aberta
10.
FEMS Microbiol Rev ; 46(4)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35137064

RESUMO

The atmosphere connects habitats across multiple spatial scales via airborne dispersal of microbial cells, propagules and biomolecules. Atmospheric microorganisms have been implicated in a variety of biochemical and biophysical transformations. Here, we review ecological aspects of airborne microorganisms with respect to their dispersal, activity and contribution to climatic processes. Latest studies utilizing metagenomic approaches demonstrate that airborne microbial communities exhibit pronounced biogeography, driven by a combination of biotic and abiotic factors. We quantify distributions and fluxes of microbial cells between surface habitats and the atmosphere and place special emphasis on long-range pathogen dispersal. Recent advances have established that these processes may be relevant for macroecological outcomes in terrestrial and marine habitats. We evaluate the potential biological transformation of atmospheric volatile organic compounds and other substrates by airborne microorganisms and discuss clouds as hotspots of microbial metabolic activity in the atmosphere. Furthermore, we emphasize the role of microorganisms as ice nucleating particles and their relevance for the water cycle via formation of clouds and precipitation. Finally, potential impacts of anthropogenic forcing on the natural atmospheric microbiota via emission of particulate matter, greenhouse gases and microorganisms are discussed.


Assuntos
Atmosfera , Microbiota , Atmosfera/química , Metagenômica
11.
Environ Int ; 160: 107077, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35016024

RESUMO

Antibiotic resistance has become a major Global Health concern and a better understanding on the global spread mechanisms of antibiotic resistant bacteria (ARB) and intercontinental ARB exchange is needed. We measured atmospheric depositions of antibiotic resistance genes (ARGs) by quantitative (q)PCR in rain/snow collected fortnightly along 4 y. at a remote high mountain LTER (Long-Term Ecological Research) site located above the atmospheric boundary layer (free troposphere). Bacterial composition was characterized by 16S rRNA gene sequencing, and air mass provenances were determined by modelled back trajectories and rain/snow chemical composition. We hypothesize that the free troposphere may act as permanent reservoir and vector for ARB and ARGs global dispersal. We aimed to i) determine whether ARGs are long-range intercontinental and persistently dispersed through aerosols, ii) assess ARGs long-term atmospheric deposition dynamics in a remote high mountain area, and iii) unveil potential diffuse ARGs pollution sources. We showed that the ARGs sul1 (resistance to sulfonamides), tetO (resistance to tetracyclines), and intI1 (a proxy for horizontal gene transfer and anthropogenic pollution) were long-range and persistently dispersed in free troposphere aerosols. Major depositions of tetracyclines resistance matched with intensification of African dust outbreaks. Potential ARB mostly traced their origin back into agricultural soils. Our study unveils that air masses pathways are shaping ARGs intercontinental dispersal and global spread of antibiotic resistances, with potential predictability for interannual variability and remote deposition rates. Because climate regulates aerosolization and long-range air masses movement patterns, we call for a more careful evaluation of the connections between land use, climate change and ARB long-range intercontinental dispersal.


Assuntos
Antagonistas de Receptores de Angiotensina , Genes Bacterianos , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , RNA Ribossômico 16S/genética
12.
Environ Int ; 158: 106916, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34627012

RESUMO

The atmosphere is a potential pathway for global-scale and long-range dispersal of viable microorganisms, promoting biological interconnections among the total environment. We aimed to provide relevant baseline information for long-range long-term intercontinental exchange of potentially infectious airborne microorganisms of major interest in environmental and health-related disciplines. We used an interannual survey (7-y) with wet depositions fortnightly collected above the boundary layer (free troposphere) at a remote high-elevation LTER (Long-Term-Ecological-Research) site, analyzed by 16S and 18S rRNA genes, and compared to a database of 475 well-known pathogens. We applied a conservative approach on close relatives of pathogenic species (>98% identity) standing their theoretical upper limit for atmospheric baseline relative abundances. We identified c. 2-3% of the total airborne microbiota as potential pathogens. Their most frequent environmental origins were soil, aquatic, and anthropogenic sources. Phytopathogens (mostly fungi) were the potential infectious agents most widely present. We uncovered consistent interannual dynamics with taxa foreseeable over time (i.e., predictable seasonal behavior) and under recurrent environmental scenarios (e.g., Saharan dust intrusions), respectively, being highly valuable microbial forensic environmental indicators. Up to 8 bacterial and 21 fungal genera consistently showed temporal abundances and recurrences unevenly distributed. Incidence of allergenic fungi was lower in summer, and significantly higher in spring. Close relatives to Coccidioides posadasii consistently showed higher signals (i.e., high specificity and high fidelity) in winter, whereas Cryptococcus neoformans had a significant signal in spring. Along Saharan dust intrusions, the bacterial phytopathogens Acidovorax avenae and Agrobacterium tumefaciens and the fungal phytopathogens Pseudozyma hubeiensis and Peniophora sp. consistently showed higher signals. Potential human pathogens showed low proportion, being mostly fungal allergens. Microorganisms related to obligated human, amphibian and fish pathogens were commonly found in winter. More studies in remote field sites above the boundary layer will unveil whether or not a similar trend is found globally.


Assuntos
Microbiologia do Ar , Monitoramento Ambiental , Animais , Atmosfera , Poeira/análise , Fungos/genética , Humanos , Estações do Ano
13.
Sci Rep ; 11(1): 20223, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642388

RESUMO

Microorganisms attached to aerosols can travel intercontinental distances, survive, and further colonize remote environments. Airborne microbes are influenced by environmental and climatic patterns that are predicted to change in the near future, with unknown consequences. We developed a new predictive method that dynamically addressed the temporal evolution of biodiversity in response to environmental covariates, linked to future climatic scenarios of the IPCC (AR5). We fitted these models against a 7-year monitoring of airborne microbes, collected in wet depositions. We found that Bacteria were more influenced by climatic variables than by aerosols sources, while the opposite was detected for Eukarya. Also, model simulations showed a general decline in bacterial richness, idiosyncratic responses of Eukarya, and changes in seasonality, with higher intensity within the worst-case climatic scenario (RCP 8.5). Additionally, the model predicted lower richness for airborne potential eukaryotic (fungi) pathogens of plants and humans. Our work pioneers on the potential effects of environmental variability on the airborne microbiome under the uncertain context of climate change.


Assuntos
Bactérias/classificação , Eucariotos/classificação , Plâncton/classificação , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA/métodos , Microbiologia do Ar , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Mudança Climática , Monitoramento Ambiental , Eucariotos/genética , Eucariotos/isolamento & purificação , Microbiota , Filogenia , Plâncton/genética , Estações do Ano , Análise Espaço-Temporal
14.
Microb Ecol ; 82(4): 885-896, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33725151

RESUMO

We studied the 16S and 18S rRNA genes of the bacterial, protist, and fungal microbiomes of 131 samples collected in 14 ephemeral small inland lakes located in the endorheic area of the Monegros Desert (NE Spain). The sampling covered different temporal flooding/desiccation cycles that created natural salinity gradients between 0.1% (w/v) and salt saturation. We aimed to test the hypothesis of a lack of competitive advantage for microorganisms using the "salt-in" strategy in highly fluctuating hypersaline environments where temperature and salinity transitions widely vary within short time periods, as in ephemeral inland lakes. Overall, 5653 bacterial zOTUs and 2658 eukaryal zOTUs were detected heterogeneously distributed with significant variations on taxonomy and general energy-yielding metabolisms and trophic strategies along the gradient. We observed a more diverse bacterial assembly than initially expected at extreme salinities and a lack of dominance of a few "salt-in" organisms. Microbial thresholds were unveiled for these highly fluctuating hypersaline environments with high selective pressures. We conclude that the extremely high dynamism observed in the ephemeral lakes of Monegros may have given a competitive advantage for more versatile ("salt-out") organisms compared to those better adapted to stable high salinities usually more common in solar salterns. Ephemeral inland saline lakes offered a well-suited natural framework for highly detailed evolutionary and ecological studies.


Assuntos
Lagos , Micobioma , Eucariotos , Filogenia , RNA Ribossômico 16S/genética , Salinidade , Espanha
15.
Sci Rep ; 11(1): 766, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436896

RESUMO

Studies connecting microbiome composition and functional performance in wildlife have received little attention and understanding their connections with wildlife physical condition are sorely needed. We studied the variation in gut microbiota (hard fecal pellets) between allopatric subspecies of the European wild rabbit in wild populations and in captured individuals studied under captivity. We evaluated the influence of environmental and host-specific factors. The microbiome of wild rabbit populations reduced its heterogeneity under controlled conditions. None of the host-specific factors tested correlated with the microbiota composition. We only observed significant intra-group dispersion for the age factor. The most diverse microbiomes were rich in Ruminococcaceae potentially holding an enriched functional profile with dominance of cellulases and xylanases, and suggesting higher efficiency in the digestion of fiber-rich food. Conversely, low diversity gut microbiomes showed dominance of Enterobacteriaceae potentially rich in amylases. We preliminary noticed geographical variations in field populations with higher dominance of Ruminococcaceae in south-western than in north-eastern Spain. Spatial differences appeared not to be subspecies driven, since they were lost in captivity, but environmentally driven, although differences in social structure and behavior may also play a role that deserve further investigations. A marginally significant relationship between the Ruminococcaceae/Enterobacteriaceae ratio and potential life expectancy was observed in captive rabbits. We hypothesize that the gut microbiome may determine the efficiency of feeding resource exploitation, and can also be a potential proxy for life expectancy, with potential applications for the management of declining wild herbivorous populations. Such hypotheses remain to be explored in the future.


Assuntos
Animais Selvagens/microbiologia , Microbioma Gastrointestinal , Coelhos/microbiologia , Animais , Fezes/microbiologia , Geografia , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Espanha
16.
Ecology ; 102(2): e03247, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33217780

RESUMO

A simple description of temporal dynamics of ecological communities may help us understand how community assembly proceeds, predict ecological responses to environmental disturbances, and improve the performance of biological conservation actions. Although community changes take place at multiple temporal scales, the variation of species composition and richness over time across communities and habitats shows general patterns that may potentially reveal the main drivers of community dynamics. We used the simplest stochastic model of island biogeography to propose two quantities to characterize community dynamics: the community characteristic time, as a measure of the typical time scale of species-richness change, and the characteristic Jaccard index, as a measure of temporal ß diversity, that is, the variation of community composition over time. In addition, the community characteristic time, which sets the temporal scale at which null, noninteracting species assemblages operate, allowed us to define a relative sampling frequency (to the characteristic time). Here we estimate these quantities across microbial and macroscopic species assemblages to highlight two related results. First, we illustrated both characteristic time and Jaccard index and their relation with classic time-series in ecology, and found that the most thoroughly sampled communities, relative to their characteristic time, presented the largest similarity between consecutive samples. Second, our analysis across a variety of habitats and taxa show that communities span a large range of species turnover, from potentially very fast (short characteristic times) to rather slow (long characteristic times) communities. This was in agreement with previous knowledge, but indicated that some habitats may have been sampled less frequently than required. Our work provides new perspectives to explore the temporal component in ecological studies and highlights the usefulness of simple approximations to the complex dynamics of ecological communities.


Assuntos
Biodiversidade , Ecossistema , Biota , Ilhas
17.
Microbiome ; 8(1): 92, 2020 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-32534595

RESUMO

BACKGROUND: Understanding the large-scale patterns of microbial functional diversity is essential for anticipating climate change impacts on ecosystems worldwide. However, studies of functional biogeography remain scarce for microorganisms, especially in freshwater ecosystems. Here we study 15,289 functional genes of stream biofilm microbes along three elevational gradients in Norway, Spain and China. RESULTS: We find that alpha diversity declines towards high elevations and assemblage composition shows increasing turnover with greater elevational distances. These elevational patterns are highly consistent across mountains, kingdoms and functional categories and exhibit the strongest trends in China due to its largest environmental gradients. Across mountains, functional gene assemblages differ in alpha diversity and composition between the mountains in Europe and Asia. Climate, such as mean temperature of the warmest quarter or mean precipitation of the coldest quarter, is the best predictor of alpha diversity and assemblage composition at both mountain and continental scales, with local non-climatic predictors gaining more importance at mountain scale. Under future climate, we project substantial variations in alpha diversity and assemblage composition across the Eurasian river network, primarily occurring in northern and central regions, respectively. CONCLUSIONS: We conclude that climate controls microbial functional gene diversity in streams at large spatial scales; therefore, the underlying ecosystem processes are highly sensitive to climate variations, especially at high latitudes. This biogeographical framework for microbial functional diversity serves as a baseline to anticipate ecosystem responses and biogeochemical feedback to ongoing climate change. Video Abstract.


Assuntos
Biodiversidade , Clima , Rios/microbiologia , China , Noruega , Espanha
18.
FEMS Microbiol Ecol ; 96(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32006018

RESUMO

We characterized the rich Archaea microbiome of shallow inland lakes (Monegros Desert, NE Spain) by 16S rRNA gene tag sequencing covering a wide salinity range (0.1%-40% w/v) along 3 years. Up to 990 operational taxonomic units (OTUs; >97% identity) were detected allocated in 14 major archaeal phyla and heterogeneously distributed along the salt gradient. Dynamics and idiosyncratic ecological distributions were uncovered for the different phyla. A high genetic richness was observed for Woesearchaeota and Pacearchaeota (>370 OTUs each), followed by Halobacteria (105), Nanohaloarchaeota (62) and Thermoplasmata (19). Overall, the distribution of genetic richness was strongly correlated with environmental niche amplitude, but not with occurrence. We unveiled high occurrence for a very rich Woesearchaeota assemblage, and an unexpected positive correlation of Pacearchaeota abundance with salinity at >15% dissolved salt content. The estimated dynamic behaviour (temporal 'turnover' rates of presence/absence data) unveiled Thaumarchaeota and Halobacteria as the most dynamic groups, and Aenigmarchaeota and Thermoplasmata as the most stable. The DPANN Pacearchaeota, Woesearchaeota, and Nanohaloarchaeota showed intermediate rates, suggesting higher resilience to environmental perturbations. A rich and dynamic Archaea microbiome was unveiled, including unseen ecological traits for relevant members of the still largely unknown DPANN group, supporting a strong ecological differentiation between Pacearchaeota and Woesearchaeota.


Assuntos
Archaea , Microbiota , Archaea/genética , Biodiversidade , Lagos , Filogenia , RNA Ribossômico 16S/genética , Espanha
19.
Environ Microbiol ; 22(1): 297-309, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31680440

RESUMO

Microbial communities in natural ecosystems are subject to strong ecological rules. The study of local communities along a regional metacommunity can reveal patterns of community assembly, and disentangle the underlying ecological processes. In particular, we seek drivers of community assembly at the regional scale using a large lacustrine dataset (>300 lakes) along the geographical, limnological and physico-chemical gradients in the Pyrenees. By using high throughput amplicon sequencing of the 16S rRNA gene, and inferring environmental sources of bacterial immigrants, we showed that surface aquatic bacterial assemblages were strongly influenced by terrestrial populations from soil, biofilms or sediments, and primarily selected by a pH-alkalinity gradient. Indeed, source proportions explained 27% of the community variation, and chemistry 15% of the total variation, half of it shared with the sources. Major taxonomic groups such as Verrucomicrobia, Actinobacteria and Bacteroidetes showed higher aquatic affinities than Parcubacteria, Gammaproteobacteria, Alphaproteobacteria or Betaproteobacteria, which may be recruited and selected through different hydrographic habitats. A regional fingerprint was observed with lower alpha diversity and higher beta diversity in the central Pyrenees than in both ends. We suggest an ecological succession process, likely influenced by complex interactions of environmental source dispersal and environmental filtering along the mountain range geography.


Assuntos
Organismos Aquáticos/classificação , Bactérias/classificação , Bactérias/isolamento & purificação , Lagos/microbiologia , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Alphaproteobacteria/isolamento & purificação , Organismos Aquáticos/genética , Organismos Aquáticos/isolamento & purificação , Bactérias/genética , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Betaproteobacteria/classificação , Betaproteobacteria/genética , Betaproteobacteria/isolamento & purificação , Biodiversidade , Ecossistema , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Microbiota , Plâncton/classificação , RNA Ribossômico 16S/genética , Espanha , Verrucomicrobia/classificação , Verrucomicrobia/genética , Verrucomicrobia/isolamento & purificação
20.
Sci Total Environ ; 707: 135929, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-31863999

RESUMO

High mountain lakes are, in general, highly sensitive systems to external forcing and good sentinels of global environmental changes. For a better understanding of internal lake processes, we examined microbial biodiversity and potential biogeochemical interactions in the oligotrophic deep high-mountain Lake Redon (Pyrenees, 2240 m altitude) using shotgun metagenomics. We analyzed the two ends of the range of environmental conditions found in Lake Redon, at 2 and 60 m depths. Bacteria were the most abundant component of the metagenomic reads (>90%) and the diversity indices of both taxonomic (16S and 18S rRNA) and functional (carbon-, nitrogen-, sulfur-, and phosphorous-cycling) related genes were higher in the bottom dark layer than in the upper compartment. A marked segregation was observed both in biodiversity and in the dominant energy and biomass generating pathways between the extremes. The aerobic respiration was mainly dominated by heterotrophic Burkholderiales at the top and Actinobacteria and Burkholderiales at the lake bottom. The potential for an active nitrogen cycle (nitrogen fixation, nitrification, nitrite oxidation, and nitrate reduction) was mainly found at 60 m, and potential for methanogenesis, anaerobic ammonia oxidation and dissimilatory sulfur pathways were only observed there. Some unexpected and mostly unseen energy and biomass pathways were found relevant for the biogeochemical cycling in lake Redon, i.e., those related to carbon monoxide oxidation and phosphonates processing. We provide a general scheme of the main biogeochemical processes that may operate in the sentinel deep Lake Redon. This framework may help for a better understanding of the whole lake metabolism.


Assuntos
Lagos , Metagenômica , Bactérias , Biodiversidade , Nitrificação , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...